Remember meForgot password?
    Log in with Twitter

article imageCareless disposal of medicines increases antimicrobial resistance

By Tim Sandle     Apr 28, 2019 in Science
Copenaghen - There are a number of ways by which antimicrobial resistance can spread, and one that is of growing concern is the disposal of medicines by consumers down sinks and toilets. A new technique can help to assess the extent of the spread.
Antimicrobial resistance is an established global health problem which is characterized by the ability of microorganisms to counter the effects of medicines. The threat posed by this to human populations is such that the tackling of the problem is classed as one of the Sustainable Development Goals of the World Health Organization.
Indiscriminate disposal of unwanted medicines
One factor that is not helping with the rise of antimicrobial resistance is the way that medicines are disposed of. Various reports indicate the significant role of the environment in the emergence and spread of resistance to antimicrobials. Antimicrobials, like antibiotics, enter the environment through too many people choosing to dispose of medicines themselves at home (such as by flushing the unwanted medications down a sink of via the toilet) rather than returning the unused medication to the originating pharmacy for safe disposal.
Global variation?
As to how widespread the presence of antimicrobial organisms are in the sewage system and the extent that this related to human activity has been difficult to discern, particularly any variations with the patterns of resistance worldwide. A new method, based on a mix of genetics and statistical analysis aims to address this knowledge gap.
New method to assess resistance patterns
The novel method, which comes from the Technical University of Denmark, involves assessing genetic materials recovered from untreated sewerage. The technique demonstrates how this analysis can assist scientists which identifying antimicrobial resistance patterns in areas where there are human populations worldwide. The focus of the research, and where data was collected for the analysis, was in regions of Africa, Asia and South America. These data, where it was found there are high levels of antimicrobials, were contrasted with North America and Western Europe, where levels were found to be relatively lower.
These patterns were visualized through an examination of the genetic materials extracted from untreated sewerage in 74 cities, from samples drawn across 60 countries. The follow-up step was to analyze the data using statistical methods. From this, the researchers were able to estimate patterns of resistant bacteria across different global regions.
According a summary by Science Development: "The countries standing out as having the most divergent distribution of antimicrobial resistance genes were Brazil, India and Vietnam, suggesting that these countries could be hot spots for emergence of novel antimicrobial resistance mechanisms."
The concern for less developed regions is that antimicrobial resistance gene abundance strongly correlates with socio-economic, health and environmental factors, meaning that countries with fewer resources and poorer populations will face greater challenges in addressing the concern.
The new method to assess resistance patterns has been reported to the journal Nature Communications, where the paper is titled "Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage."
More about antimicrobial resistance, Bacteria, Sewage, Microbiology
More news from
Latest News
Top News