Email
Password
Remember meForgot password?
Log in with Facebook Log in with Twitter
Connect your Digital Journal account with Facebook or Twitter to use this feature.

article imageMigratory Canada geese blamed in Hudson river landing

article:273862:17::0
By Bob Ewing     Jun 9, 2009 in World
Canada geese migrating from Labrador have been fingered as the culprits sucked into the engines of a US Airways passenger jet
It appears migratory Canadian geese were the culprits responsible for the Jan. 15 US Airways Flight 1549 bird strike.
This discovery can assist wildlife professionals to develop policies and techniques that will reduce the risk of future collisions. The team’s findings are being published in the journal “Frontiers in Ecology and the Environment” today, June 8.
The US Airways plane collided with a flock of geese approximately 2,900 feet above the ground, after taking off from New York’s LaGuardia Airport. The collision caused extensive damage to both engines five miles from the airport.
The pilot was able to conduct an emergency landing in the Hudson River—all 155 people on board survived with few serious injuries. Investigators at the National Transportation Safety Board later sent feathers and tissue extracted from the plane’s engines to the Smithsonian in Washington, D.C., for analysis.
Researchers in the Feather Identification Laboratory at the Smithsonian’s National Museum of Natural History used molecular genetic techniques and feather samples from museum collections, as well as a technique developed for rapid species identification with small genetic samples called DNA barcoding, to determine that the birds involved were Canada geese (Branta canadensis).
"We (tested) the feathers that came out of the US Airways engines and compared them, and they turned out to be birds that were similar to birds that were sampled in Labrador," said Peter Marra, research scientist at the Smithsonian's Migratory Bird Center.
"There were actual feathers in there, which is quite amazing because one of the engines dropped to the bottom of the Hudson."
The next step for the scientists was to find out if these geese were migratory or non-migratory (resident) birds. “Determining whether these birds were migratory or not was critical to our research and will help inform future methods of reducing bird strikes,” said Peter Marra, research scientist at the Smithsonian’s Migratory Bird Center located at the National Zoo and lead author of the project’s paper.
“Resident birds near airports may be managed by population reduction, habitat modification, harassment or removal, but migratory populations require more elaborate techniques in order to monitor bird movements.”
The team took their research to a molecular level at the Smithsonian’s Museum Conservation Institute labs in Suitland, Md., where they examined stable-hydrogen isotopes from the feathers to confirm whether the geese were from resident or migratory populations.
Stable-hydrogen isotope values in feathers can serve as geographic markers since they reflect the types of vegetation in the bird’s diet at the time it grew new feathers after molting. Using a mass spectrometer, which measures the masses and relative concentrations of atoms and molecules at high precision, the scientists compared the bird-strike feather samples with samples from migratory Canada geese and from resident geese close to LaGuardia Airport.
Analysis revealed that the isotope values of the geese involved in the crash of Flight 1549 were most similar to migratory Canada geese from the Labrador region and significantly different from resident feathers collected in New York City.
“It is important to not only know what species of birds are involved in collisions, but to also understand the role that migration plays in the larger picture,” said Carla Dove, program director at Feather Identification Laboratory.
“The more information we are able to gather in cases like this, the more we will be able to reduce the risks of bird strikes in the future.”
“Knowing the frequency and timing of collisions is important,” Marra said.
“Otherwise we are missing valuable information that could reveal patterns of frequency, location and species involved.
"We really don't have a system in place that could do the job," said Marra.
"We're fairly close, but there is some additional research to be done."
article:273862:17::0
More about Canada geese, Hudson river, Landing
More news from
Latest News
Top News
Engage

Corporate

Help & Support

News Links

copyright © 2014 digitaljournal.com   |   powered by dell servers